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Resonant interactions between two trains 
of gravity waves 

By M. S .  LONGUET-HIGGINS 
National Institute of Oceanography, Wormley, Surrey 

(Received 20 June 1961) 

In  a previous paper, Phillips (1960) showed that two or three trains of gravity 
waves may interact so as to produce a fourth (tertiary) wave whose wave-number 
is different from any of the three primary wave-numbers k,, k,, k,, and whose 
amplitude grows in time. Such resonant interactions may produce an appreciable 
modification of the spectrum of ocean waves within a few hours. In  this paper, 
by a slightly different method, the interaction is calculated in detail for the 
simplest possible case: when two of the three primary wave-numbers are equal 

It is found that, when k, and k, are parallel or antiparallel, the interaction 
vanishes unless k, = k,. Generally, if 8 denotes the angle between k, and k,, 
the rate of growth of the tertiary wave with time is a maximum when 8 5 17"; 
the rate of growth with horizontal distance is a maximum when 8 = 24". The 
calculations show that it should be possible to detect the tertiary wave in the 
laboratory. 

(k3 = kl). 

1. Introduction 
In  the first-order theory of gravity waves of small amplitude, two or more 

simple sine-waves which each individually satisfy the condition of constant 
pressure at the free surface together satisfy the same condition, so that the wave 
trains are propagated independently and without mutual interaction. If now 
squares and products of the velocities are taken into account the waves are found 
to interact. To the second order, the interaction produces only a small modi- 
fication to the motion, which remains bounded in time. However, Phillips 
(1960) has discovered that in the third approximation it is possible for a transfer 
of energy to take place from three primary waves (of wave-numbers k,, k,, k,) 
to a fourth wave (of wave-number k,) in such a way that the amplitude of the 
fourth wave increases linearly with time. Thus, although the fourth-wave 
amplitude at  first is very small (being of the third order) it may in time grow so 
as to be comparable with the three primary waves. The condition for this is 
that the wave-numbers k,, k,, k,, k, and frequencies cr,, (r,, cr,, cr, each satisfy 
the relation for a free wave: 

~f = g lkil (i = 1,2,3,4), (1.1) 
and that cr,&cr2*(r3*cr4 = 0, k , + k , + k , f k 4  5 0, (1.2) 

with the same combination of signs in each case. 
21 Fluid Mech. 12 
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If such interactions do occur in the oceans they may produce a considerable 
modification in the ocean wave spectrum, in a matter of a few hours. Indeed 
Hasselmann (1961) has computed the rate of transfer of energy within a con- 
tinuous wave spectrum due to this kind of mechanism. 

The phenomenon is so intriguing, and its possible effects of such consequence, 
that an attempt to verify it in the laboratory seems desirable. In  Phillips's 
original paper only the order of magnitude of the interaction was estimated, and 
a calculation of the coupling factor was not given. The purpose of the present 
paper is to carry the calculations to the point where a numerical estimate can be 
made of the amplitude of the tertiary wave in the simplest possible case, namely 
when two of the wave-numbers k,, k,, k, are equal. The computation shows that 
the tertiary wave might well be observed in some experimental wave basins at 
present available. 

It is also thought that the simplified method of calculation, which differs in 
certain respects from that of Phillips or Hasselmann, may be of interest in itself. 

2. General equations 
The presence of a small vorticity (Longuet-Higgins 1953) will not affect the 

results to the degree of approximation considered, and so it is permissible to 
assume the existence of a potential 4 for the velocity u: thus 

u = v4, v24 = 0, (2.1) 

in incompressible flow. Let z be the vertical co-ordinate; then, at the free surface 
z = 5, the pressure being constant, we have from Bernoulli's equation 

(2 .2 )  
84 gg+,+gu2 = 0 (2 = C),  ot 

the arbitrary function of t being absorbed into 4. The condition that ( 2 - 5 )  

vanish following a particle gives 

aC a4+ --+-- = o  ( z = C ) .  
--- at az axax ayay (2.3) 

By operating on equation (2.2) by DIDt (differentiation following the motion) 
and then subtracting g times equation (2.3), we find that 

Now let the left-hand sides of the above three equations be expanded in Taylor 
series about z = 0 to give 

1 s 5 + ~ +  5 a z a t + t 5 ' ~ +  a24 ...]+[lu"+5az(Pz)+... a = 0 (z  = O ) ,  

(2.2a) 

(2 = O ) ,  (2.3a) 
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[ (g + 9 g) + 5; (g + 9 2) + x?,, a 2  (= a 2 4  + g z) ag, + . . .] 

1 a 2  

[it az at 
+ - (  uZ)+&--(u2)+ ... +[ u.V($u2)+ ...I = 0 ( z  = 0). (2.4a) 

In these equations we may substitute the formal expressions 

(2.5) 

g, = (ag,,o+Pg,01) + (~2g,20+~/3911+P2g,02) + . * - 7  

u = (au10 + puol) + (.2Uzo + .pull + p2uo2) + . . . , 
5 = (a510 + PCo1) + (a2t-20 + .8511+ P 2 5 0 2 )  + * * * 9 

where a#lo and pQOl are to represent the two intersecting wave trains, in the first 
approximation, a and /3 being independent small quantities proportional to the 
surface slopes. The remaining terms of the series represent wave interactions, 
and may be found by equating coefficients of aipj in the various equations. Thus, 
from (2.1), we obtain 

uii = Vg,+ v2&. = 0 ( i , j  = 1,2,  ...). (2.6) 

In  (2.2a), (2.3a) and (2.4a) the terms in a give 

(2.7) 

and the terms in 
in a2 and ap give respectively 

give similar equations for q501. In  equation (2.4a) the terms 

i 

Since $lo, for example, satisfies Laplace's equation (2 .6)  we have 

by the third of equation (2.7). It follows that in the equations for #21 such terms 
can be omitted. Thus in (2.4a) the coefficient of a2p gives 

+ Ul0 . V(Ul0 . UOl) + uol. V(*uz,o> = 0. (2.10) 

Equations (2.7), (2.8) and (2.10) are all to be satisfied when z = 0. 

21-2 
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3. Deep water 
We shall now assume that the water is deep for the first- and second-order 

waves, i.e. that e-V, e--kzh, e-k'h < 1, wherek, = ]k,[, k, = lk21 andk' = lkl- k,I. 
As yet, no assumption is made about the third-order waves. 

are satisfied by the well 
known solution 

The equations (2.7) for the first approximation 

clo = a, cos $,, = a,c~,k,l eki8sin $,, (3.1) 

where for convenience we write 
$I= kl.x-gl,t, 

provided that 
We have then 

~ 2 ,  = gk,. (3.3) 

J u2 - 2 2 2 k z  
10 - a,v,e 9 

so that ~ 2 , ~  is independent of x, y and t .  
The first of equations (2.8) is now satisfied identically by 

corresponding to the fact that the second-order velocities vanish for a single 
irrotational wave in deep water: 

(The second-order surface elevation c,, does not vanish, however .) 
The velocity potential q501 of the second wave is defined by equations similar 

t o  (3.1), (3.2) and satisfies relations similar to (3.3), (3.4). Moreover we find that 

ulo.uol = a , a 2 ~ , v 2 e ~ ~ ~ + ~ 4 [ c o s 2 ~ ~  cos ($l-$2)-sin2+8 cos ($1+$2)], (3.7) 

where 8 is the angle between the wave-numbers k, and k,. Thus, from the second 
of equations (2.8), we have 

- (%$+g%) = 2u1a,a,~,[(~,-~,)cos240 sin($l-$2) 

- (g, + g2) sin2 +8 sin ($, + $2)], (3.8) 

which is satisfied (together with Laplace's equation) by 

= A elki-kzlDssin ($, - +k2) - B elkl+kzlzsin + $2), (3-9) 

where 

(3.10) 
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The equation (2.10) for $,, is now seen to be very greatly simplified. In  fact, 
omitting those terms which are identically zero, we have 

FIGURE 1. Definition diagram for a, /3 and 8. 

The terms on the right-hand side of (3.11) when evaluated at z = 0 are as 
follows: 

= -2a2,a,a,a,[(a,-ca,) Ik,-k2J cos2+f3 sin($,-$,)cos$, 

- (a, + a,) 1 k, + k,l sin2 -if3 sin ($, + $,) cos $J, (3.12) 
a 
(2u11- u10) 

= 2Aa, a, I k, - k, I [c, sin2 $a sin $, - ( 2a1 - a,) cos2 &a! sin (2$, - $,)I 
- 2Ba1a1 Jk, + k,J [a2 sin2 +/3 sin $, - (2a1 + a,) cos2 $/3 sin (2$, + ?,h2)], (3.13) 

a 2  

10 aZ at 6 ~ (2u10. uol) = 2a~a2a,aZ(kl + k,) [(al - a,) cos2 40 sin ($, - $,) cos 

- (a, + a,) sin2 &0 sin ($, + $& cos $,I, (3.14) 

ulo.V(u,o.uo,) = a2,a2a2,a,[(El+k,cos2$0 sin2+8)sin$, 

+ k, c0s4 40 sin (2$, - ?,h2) - k, sin4 40 sin (2$, + $ J ] ,  (3.15) 

uol. V ( & U ~ , ~ )  = a;a, a2, a, k, sin $z,  (3.16) 

where a and /3 are the angles between (k, - k,) and k,, and between (k, + k,) 
and - k,, respectively (see figure 1). 

4. The resonant interaction 
The right-hand side of (3.11) may be expressed as the sum of terms propor- 

tional to sin ($, k $, f $,). In  the present calculation we are interested only in 
the terms proportional to sin (2$, - $,). Omitting the others, we have 

- r g + g % )  az = K~in(2$,-$~),  
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where K = @a, u, u2 cos2 40 [ (u, - u,) { (k ,  + k,) - I k, - k, I }  + 6, k, cos2 40 

then a solution to equation (4.1) and of Laplace’s equation is 

provided that e--12k1-k21h < 1, i.e. the wave represented by q521 is effectively in 
deep water. 

Now (4.4) represents a wave whose amplitude grows in time. But from (2.2a)) 
on equating coefficients of a2p we have 

(4.5) a h 1  - 
S d l +  7 - f < $ , O l  $01’ 4119 421)’  

which is bounded in time. Hence 

Thus the amplitude of this wave is simply Kt/Zg. 

5. The period equation 
Equation (4.3)’ together with the relations 

4 = g Ikll, 4 = 9 Ik,[, (5.1) 

are together a special case of equations (1.1). We shall now investigate the 
relationship between k, and k, which these imply. 

It is convenient to write 

k, - k, = k’, U, - u,= d, (5.2) 

so that (5.1) and (4.3) become 

CT: = g lkll, ( c T ~ + c ~ ’ ) ’  = 9 \ k l + k l ,  (u,-cT’)’ = g \ k l - k \ .  (5.3) 

Since the angle between k, and k is a (see figure I), we have 

(5.4) 
(CT,+G’)~ = g2 Ik,+k12 = g2(kZ,+k‘2+2klk’C0s~), 

( c ~ , - d ) 4  = g21kl-k12 = g2(kZ,+k’2-2klk‘~~~a), 

I and so C T ~  + 6 4  d2 + d4 = g’(k2, + k”), 
4 4  u’ + 4a, u13 = g22k1 k’ cos a. 

(5.5) 

On substituting u2, = gk, in the last two equations, we find 

gk’ = ~ ~ ’ ( 6 4  + d 2 ) 8 ,  cos CI = 2 ( 4  + d2)/u1(6uH + d2)*. (5 .6)  

We now write g’b, = E,  (5.7) 



Resonant interactions between two trains of gravity waves 327 

so that 

(5 .8 )  I a,/fl, = 1 + 5, 
k,/k,  = ~ r i / ~ ;  = (1 + [),, 
k'lk, = gE'/a2, = 6(6+E2)4, 

pa,- a,)/a, = 1 - 5, 
I2k1- k, I / E l  = (1 - t)', 

C O S ~  = 2(l+52)/(6+f;2)4. 

Since I%'lk, is non-negative, we must take the positive or negative sign in the 
square root according as ( is positive or negative. We have 

(k'lk,) sin a: = k "(2 + 5,) (1 + 4t2)]4 = Y ,  (5.9) 
(kt/E1)c0sa = 2((1 +'p) = x, 

/ \ 

\ / 
\ / 
\ / 

\ / 
\ / 
\ / , , 

/ 
. \ - - - _ -  - -  

FIGURE 2. Locus of k,, when k, is fixed. 

and a plot of Y us. X readily yields the figure-of-eight diagram obtained by 
Phillips (1960), and shown in figure 2. Positive values of 6 correspond to points 
on the right-hand loop, and negative values of 5 to points on the left-hand loop. 
The gradient of the curve at the centre point (5 = 0) is 

k 1/42 = k tan35" 16'. (5.10) 

The two end-points correspond to 5 = I. +, i.e. 

a2/gl = or 8, k,/k,  = p or i. (5.11) 

The angle 0 between k, and k, is found from figure 2 by noting that 

and so 
E 1+25+2<3 

( 1 + 0 2  * 

cose = $(l i -X) = 
2 

Similarly, the angle 0' between (2k1 - k,) and k, is given by 

12k,-k21 case' = kl-E'cosa 

and hence 
1 - 25- 253 

1 %  - k2l (1 - . 
COSO' = -___ (1-X) = 

(5.12) 

(5.13) 

(5.14) 

(5.15) 

A plot of ~f: 6' and & 8' is shown in figure 3, for < 2 0. If the sign of 5 is reversed, 
the two curves are simply interchanged. 
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E 

FIGURE 3. Corresponding values of 8 and - 8’ as functions of [, when 6 3 0. 

6. Evaluation of K 
From equation (5.13) we have 

5 

and from (5.8) C O S ~  3. = +{l + 2( 1 + c2) (6 + t2)-$}. (6.2) 

On substituting these values, and others derived from (5.8), into equation (4.2) 
we find, after some reduction, 

K = (a1kJ2 (a2k2)g2G1p(5), (6.3) 

where 

The amplitude of the tertiary wave is given by 

so that its ratio to the amplitude a1 of the first wave is 
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When the two primary wave-numbers are equal (k, = k,), we have 5 = 0 and 
F = 1, so that c,, = &:a, k: cr,t sin (k,x - g,t). 

In  this case only c,, can be interpreted as a contribution to the increase in 
frequency of the primary wave (<,,,+ &,,) (see Phillips 1960). In  the case 5 = 4, 
when k, lies at the right-hand extremity of the figure-of-eight, we see from (6.4) 
that F = 0. That is to say, in the only other case when the waves k, and k, are 
propagated in the same direction, the amplitude of the tertiary wave vanishes. 
Similarly, when 5 = -Q, that is to say when k, lies at  the left-hand end of the 
figure-of-eight and the directions of k, and k, are opposite, then F also vanishes. 

e 
FIGURE 4. The coupling function P,  giving the time rate of growth of 

the tertiary wave, under specially uniform conditions. 

A plot 'of F vs. 8 is shown in figure 4. It will be seen that for 5 < 0, i.e. on 
the left-hand part of the figure-of-eight, the coupling is much greater than for 
5 > 0. A maximum of F occurs a t  around 8 = 17' on the left-hand part of the 

When the two primary waves are at right-angles, cos8 vanishes and so 6 is 
loop. 

- - - 

the real root of 
(6.8) 263+25+ 1 = 0, 

that is to say 
5 = (&(2/$$ - 1)}*- {&(2/% + 1))) + - 0.42385, (6-9) 

and the ratio of g1 to g, is 1 : 0.57615, or 1.7357 : 1. From figure 4 we have then 

F(6) + 0.312. (6.10) 
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7. Finite fetch 
Suppose that the two wave trains interact for an unlimited time, but over only 

a finite distance D, measured in the direction of propagation of the tertiary wave. 
Then it is necessary only to replace t in equation (6.5) by D/cg, where cg is the 
group-velocity of the tertiary wave: 

Thus 

where 

9 9 c = __ 
2(2cr1-02) - 201(1-[). 

I i 

e 
FIGURE 5.  The coupling function G ,  giving the space rate of growth of 

the tertiary wave, under steady conditions. 

It is remarkable that I cZl) , as given by (7.2) depends only on the maximum slopes 
of the two primary wave trains, the total distance D and the angle of inter- 
section (given by the parameter [). 

The function G is shown plotted against 6' in figure 5. Like F ,  it is greater 
over the left-hand part of the figure-of-eight (f < 0) ,  and has a maximum 
(G -i. 1.32) at around 8 = 24". When 6' = 90' (the two primary waves are a t  
right-angles), we see from figure 5 that 

G + 0.442. (7.4) 
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8. A proposed experiment 
In  a rectangular basin, suppose that wave-makers are placed along two 

adjacent sides AB and DA (see figure 6), and that beaches, or other efficient 
wave absorbers, are placed along the other two sides. On the side AB let a wave 
train of frequency v1 he generated, travelling directly across the tank, and 
likewise on the side D A  a wave of frequency v2. 

Generally the two wave trains will excite no resonant response; but when the 
frequencies are in the critical ratio 1.736 : 1 a tertiary wave should be generated 
travelling in direction making 9'24' with the direction of k,, and slightly 
towards the second wave-maker (see figure 6); its amplitude should increase 
linearly in the direction of propagation. The tertiary wave will be reflected from 
the wave-maker at  the side of the tank, but the reflected wave will be appreciable 
only in a narrow wedge-shaped zone as on the left of figure 6.7 

There may of course be other non-linear effects (for example a t  the beaches) 
which will give rise to frequencies (2v1 - v2). However, risk of confusion with 
any such effects may be eliminated by the following procedure. Let the frequency 
of one primary wave (say vl) be kept fixed while the frequency of the other is 
slightly changed. One may expect that the amplitude of the tertiary wave will 

where 81% = 4[(2k,- k21- (2g1- g2)2] and D is the dista,nce over which the 
interaction occurs. 

f This reflexion could be eliminated by inclining the second wave-maker at an angle of 

be proportional to [sin (D. Sk)/D.  Ski, (8.1) 

about 80" to the first, instead of a t  90". 
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Although the tertiary wave may not be visible to the eye, it should be possible 
to detect it by a harmonic analysis of a wave record at any fixed point over a 
sufficient length of time. For example, if D is 10 ft. and the maximum steepness 
in each wave train is 1/10, then equation (7.2) gives 

1c2:211 = 0.442 x 10 x 10-3ft. = 0*05in., 

which should be readily detectable. 

I am indebted to Dr Phillips for reading a first draft of this paper. 
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